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In recent years, a number of new shock-capturing finite difference schemes, often called high 
resolution schemes, have been constructed. This paper presents a comparison of these schemes 
in terms of their numerical dissipation, which becomes very obvious from numerical results 
obtained for two initial value problems of a two-dimensional advection equation. We consider 
TVD schemes, which are constructed to prevent the total variation of the numerical 
approximations from increasing, as well as UN0 schemes which only guarantee that the 
number of local extrema does not increase. 8 1988 Academic Press, Inc. 

1. INTRODUCTION 

In recent years various new shock-capturing schemes have been developed for the 
approximation of nonlinear one-dimensional hyperbolic conservation laws (see, e.g., 
[ 1, 5, 10, 271). These schemes, usually called “high resolution schemes,” have the 
following properties: They are at least of second-order accuracy in smooth parts of 
the flow, they sharply resolve discontinuities without generating spurious 
oscillations, and in contrast to classical second- or higher order schemes, they do 
not need artificial viscosity. The main building block of most of these schemes are 
first-order upwind differencing schemes which incorporate into the numerical 
solution the direction of nonlinear wave propagation. In this way the upwind 
schemes guarantee the resolution of the discontinuities without wiggles, but they 
possess a strong numerical dissipation and spread discontinuities over many grid 
points. The other part of a high resolution scheme is an antidiffusive mechanism 
which converts the upwind scheme to better resolution of discontinuities and higher 
accuracy, while the desirable properties are preserved. There are several approaches 
to obtain a better resolution. The high resolution schemes using flux limiters add an 
antidiffusive term to the numerical flux of the upwind scheme. This concept was 
introduced by Boris and Book [2] and van Leer [17]. Another way was indicated 
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by the MUSCL scheme of van Leer [16]. Here, the higher order solution is 
achieved by using in each time step a more accurate representation of the initial dis- 
tribution and then applying an upwind scheme to these data. Harten [lo] in his 
approach applied the upwind scheme to a conservation law with a modified flux. A 
fourth way, not based on upwind biased differences, was proposed by Davis [8]. 
As there may be different upwind schemes and on account of these different 
approaches, there are a great number of high resolution schemes. 

In this paper we will compare various high resolution schemes by numerical 
results for initial value problems for the simplest two-dimensional conservation law, 
that of a two-dimensional linear advection equation. The one-dimensional schemes 
are extended to two dimensions by operator splitting which works very well for 
practical calculations (see, e.g., [7, 281). Because the numerical smearing of contact 
discontinuities or linear discontinuities may increase with time-contrary to shock 
waves-the capturing of these discontinuities is very important. Performing long 
time calculation differences between various schemes becomes very obvious. As in 
the case of linearity, different approaches obtaining high resolution lead to the same 
schemes and all upwind schemes agree with the Courant-Isaacson-Rees scheme 
[6]; the great diversity of high resolution schemes is rather reduced, and a com- 
parison is possible. Our results will show mainly the efficiency and the properties of 
the antidiffusive terms used in the different schemes. They will give insight into the 
shock and contact discontinuity capturing capability of the schemes for nonlinear 
problems. We will not consider the artificial compression method developed by 
Harten [ 111. As a corrective step Harten added artificial compression to a first- 
order upwind scheme to compress smeared discontinuities and he obtained a first- 
order accurate scheme with a very good resolution of discontinuities. In this paper 
we are interested in explicit second-order accurate schemes which combine the good 
approximation of discontinuities with a good approximation of smooth parts of the 
solutions as needed for most of the practial calculations. The results for our test 
problems measure the artificial compression which is inherent in the second-order 
high resolution schemes. We note that the artificial compression may also be added 
to second-order schemes near a discontinuity as a separate step. But, because 
second-order accuracy limits the amount which can be added, the artificial 
compression of first-order accuracy may lead to a narrower transition zone of a 
discontinuity. Our results will show that high resolution schemes with a strong 
antidiffusive mechanism may be over-compressive in the sense that every monotone 
transition is compressed into a discontinuity. For nonlinear problems this property 
may introduce non-physical rarefaction shocks into the numerical solution (see, 
e.g., [ 18, 271). The outcome of our calculations can directly be used for all schemes 
for the equations of compressible gas dynamics constructed via Roe’s [23] or 
Huang’s [ 131 extension to systems. 

This paper is divided into four sections. In Section 2 we will describe the test 
problems and the discretization parameters used in our numerical calculations. In 
Section 3 the construction of high resolution schemes will be briefly reviewed and 
the different schemes will be listed together with their numerical results. Section 4 
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contains our conclusions and remarks concerning the extension to the equations of 
compressible gas dynamics. 

2. NUMERICAL TEST PROBLEMS AND DISCRETIZATION PARAMETERS 

We will compare the numerical dissipation of explicit high resolution schemes by 
numerical results for the two-dimensional advection equation 

u,+ (4Y)uL + uw~).” = 0 (1) 

with 

a) = -0 - Yob, P(x) = (x -x&J. (2) 

The exact solution of (I), (2) consists in the rotation of the initial values round 
(x,, y,) with the angular velocity w. We will present two series of calculations. As 
initial values we choose a cut-out cylinder and a cone. These problems seem to be 
well suited to benchmark the numerical dissipation of the schemes. The numerical 
results of the cut-out cylinder clearly show the damping of contact discontinuities, 
while the cone illustrates the preservation of the shape of the solution, especially 
that of local extrema. Both problems visualize maintenance of the symmetry by the 
difference schemes. The “rotating cone problem” has been used to test numerical 
schemes for linear advection equations often (see, e.g., [25]), while the cut-out 
cylinder was proposed by Zalesak [30]. He used it to demonstrate the shock- 
capturing capability of his scheme. 

We choose the angular velocity w  to be 0.1 and x0 = 50, y, = 50. The region of 
computation was [0, 1001 x [0, 1001. The numerical calculations were done on a 
fixed uniform grid with 100 grid points in each direction. At time t = 207t the initial 
values have carried out one full rotation and returned to their initial position. The 
approximations of the initial values on our grid are shown in Figs. 1, 2. The cone 
has a base radius of 15 and a maximum value of 4 at the point (75, 50). The cut-out 
cylinder has the same base radius, the same maximum value and the same position. 
We performed long time calculations until t = 120~ which corresponds to six full 
rotations of the initial values. For the numerical approximations we used 3768 time 
steps. The numerical results are plotted after one and six full rotations. All 
calculations have been done on a Siemens 7881 computer using a four byte floating 
point arithmetic. 

3. HIGH RESOLUTION SCHEMES 

We shall consider numerical approximations to a one-dimensional scalar conser- 
vation law. For our calculations the one-dimensional schemes were extended to two 
dimensions by operator splitting, also called the method of fractional steps ([7 1). 
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FIG. 1. Initial values and exact solution after each full rotation-cone. 

FIG. 2. Initial values and exact solution after each full rotation--cut-out cylinder. 
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We used the two-cycle splitting of Strang [26]. Because our test problems are 
linear and for ease of presentation, we shall restrict ourselves to the simplest case of 
a conservation law, that of the linear scalar equation 

u, + cu, = 0, c = const. (3) 

Regarding the nonlinear case some remarks will be added and reference made to 
the literature. A first-order explicit upwind scheme for the linear equation (3) is 
given by the Courant-Isaacson-Rees [6] scheme 

u;+l=u;-Ac 
i 
uy - $, for c > 0, 
u;+ , - 2.4; for c < 0, 

where I denotes the mesh ratio 1= At/Ax, At and Ax are the time and space 
increments. The value u; denotes an approximation of the average value of the 
solution u in the ith grid zone at time t, = n At. Throughout we shall use the 
notations 

xi = i Ax, Xi+1/2=i(Xi+Xi+l), t,=nAt, Zi=[~,-1,2,~i+y2] (5) 

with ieZ’, ne N. 
The Courant-Isaacson-Rees scheme is stable under the usual restriction on the 

mesh ration Ilc 5 1, called CFL-condition. It captures discontinuities with no 
spurious oscillations and preserves the monotonicity properties of the exact 
solution: No new local extremum is created and the absolute values of local 
extrema do not increase. From this it follows that the total variation in x is a non- 
increasing function in time. The Courant-Isaacson-Rees scheme may be derived 
from the exact solution u(x, t,+ i) of the Cauchy problem for (3) with the piecewise 
constant initial values u(x, t,) = ~7 for x E Ii and averaging this solution over the 
grid zones. But it possesses a strong numerical dissipation and produces rather 
crude approximations for practical calculations. Figure 3 shows the result of the 
Courant-Isaacson-Rees scheme applied to both test problems after one and after 
six full rotations. 

All figures show the numerical results obtained after one full and after six full 
rotations corresponding to 628 and 3768 time steps, respectively. The exact solution 
equals the initial data (see Figs. 1, 2). Each figure shows on the left side the results 
of the problem with the cone and on the right side that with the cylinder. The 
results after one rotation are entered at the top. For every plot the maximal and 
minimal values of the numerical solution are written at the right corner. These 
values may be misleading if used alone, but when they are combined with an 
examination of the plotted numerical solution a valid comparison can be made. The 
results of the Courant-Isaacson-Rees scheme in Fig. 3 indicate the strong numerical 
dissipation. During one rotation the peak of the cone decreases from 4.0 to 1.202, 
after six rotations the cone is almost vanished. The results are quite similar for the 
cylinder; after one rotation the exact solution is no longer anticipated. 
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FIG. 3. Courant-Isaacson-Rees scheme. 

One way to get better resolution and second-order accuracy is suggested by 
van Leer’s MUSCL approach [16]. Instead of piecewise constant data van Leer 
considered the piecewise linear data 

x-xi 
0(x, t,)=uy+-.f 

2 ’ 
for xEZi. (6) 

Next the exact solution of the Cauchy problem for (3) with these initial data is 
calculated and averaged over the grid zones. In the case c > 0 the resulting scheme 
is 

ul+‘=u:-dr(u:‘-u:-,)-~(l-lc)(dxsl-dxs;-,). (7) 

Starting from the integral average u: of the approximation in Zi at time t,, the first 
step in the MUSCL approach is a reconstruction of the solution by a piecewise 
linear function. Then the upwind method is applied to these data. A necessary con- 
dition for this algorithm being of second-order accuracy, both in space and time, is 
that the slopes are locally weighted averages of right- and left-hand differences 

s; = U,(Xi, t,) + @Ax). (8) 
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For nonlinear problems the exact solution for the Cauchy problem with respect to 
the initial data (6) in general cannot be determined and is replaced by an 
approximative one. The piecewise linear distribution (6) defines boundary values in 
each grid zone 

Using a midpoint rule to obtain second-order accuracy in time these values are 
advanced by half a time-step and then a first-order upwind scheme is applied to 
these data (see [15, 16, 53). By this concept it is easy to convert a low order 
upwind scheme to higher order accuracy. 

If the slopes are selected as right-hand difference quotients, the scheme (7) is 
identical to the LaxxWendroff scheme [ 141 which is based on central differencing. 
The choice of the left-hand difference quotients leads to the second-order upwind- 
differencing scheme of Warming and Beam (see [27]). It is well known that both 
schemes generate spurious oscillations near strong gradients. The results of the 
Lax-Wendroff scheme for our two test problems are shown in Fig. 4. The plots 
clearly show wiggles behind the cone and the cylinder. The wiggles which are 
stronger for the discontinuous initial values also lead to a displaced position of the 

1 

FIG. 4. Lax-Wendroff scheme. 
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figures. The results of the Warming and Beam scheme (no figure) are similar, but 
the oscillations are somewhat smaller and in front of the cone and cylinder. 

The exact solution of (3), (6) and their averaging over the grid zones do neither 
introduce new local extrema nor accentuate the old ones. Hence the problem to 
obtain a non-oscillatory algorithm is essentially reduced to find an appropriate 
monotonicity preserving piecewise linear description of the solution. A whole class 
of appropriate slopes is given by 

s~(cI,, bi) = sign(a,) max{ Iminmod(ka,, bi)J, 

]minmod(a;, kbi)l} for 15i;k52 

where a;, hi denotes the right- and left-hand differences 

(10) 

a, = Ut+I -ui 
Ax ’ 

(11) 

and the minmod-function (see [24]) is defined by 

i 

a for [al 5 16l,ah>O 

minmod(a, h) = b for [al > lbl, ah > 0 (12) 

0 for ah SO. 

We drop here and in the following expressions the superscript “n” whenever no mis- 
understanding will occur. Schemes based on this calculation of the slopes satisfy (8) 
in smooth parts and preserve the monotonicity properties of the exact solution. The 
total variation of the approximations do not increase with time; this is called the 
TVD-property (total variation diminishing) after Harten [9]. Within a semi- 
discrete approximation (method of lines) Osher [ 191 gave some criteria for a 
MUSCL-type scheme to be second-order and TVD. These can be extended to the 
fully discrete case in a straightforward manner (see [IS]). Osher also proved in 
[ 193 the convergence of the approximations if the step sizes tend to zero. Although 
a TVD-scheme can be made second-order accurate in the sense of global error in 
L’-norm, it necessarily degenerates at local extrema to first-order accuracy in the 
sense of focal truncation error (see [21]). The slope s of a TVD-scheme will vanish 
at these points. Consequently local extrema of the numerical solution are damped 
more strongly which is usually called the “clipping phenomenon.” In contrast to the 
classical second-order schemes as the Lax-Wendroff or Warming and Beam 
scheme, the high resolution schemes are nonlinear even in the constant coefhcient 
case. 

For the linear equation (3) Roe’s [22, 241 construction of high resolution 
schemes agrees with the MUSCL approach. He formulated his schemes in terms of 
ffuctuations, signals, and average functions. He proposed the members of the class 
(10) .yI = minmod(a,, hi) and s2 which he called “superbee.” Another concept is that 
of the schemes using flux limiters which was introduced by Boris and Book [2] and 
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van Leer [ 171. Sweby [27] succeeded in giving a general framework of their con- 
struction. If we define the slopes by a switching function or transition function cp, 

s(aj7 hi) = a,V(ri) (13) 

depending on the quotient of successive gradients r, = b,/a;, then the MUSCL-type 
scheme equals the Sweby’s scheme [27] using the flux limiter cp. Hence, all flux 
limiters reformulated and reviewed by Sweby [27] may be used to define 
appropriate slopes via the relation (13). The class of slopes (10) corresponds to the 
class of flux limiters proposed by Sweby. From (13) it follows that s( 1, ri) = cp(r,) 
which facilitates geometric illustration in the (r,, cp)-plane (see [22,27]). Criteria 
for TVD-ness and second-order accuracy in terms of the switching function or flux 
limiter are given by Sweby [27] and Roe [22]. Figures 5 and 6 show the results of 
two members of the class (10) associated with the minimum and maximum values 
of k: s, and the superbee s2. The numerical dissipation of the Courant-Isaacson- 
Rees scheme is strongly reduced. Excellent results for the rotating cut-out cylinder 
are produced by the superbee slope. But the results for the cone very clearly show a 
strong clipping phenomenon, the top of the cone is clipped. After six full rotations 
the maximum value is still 3.337. Later this maximum hardly decreases (3.332 after 
12 full rotations), but the shape slowly tends against a cylinder (no figure). The 
scheme based on s, is not as compressive and the results are more strongly 
dissipated. After six rotations the groove of the cylinder is vanished, but the results 
after six rotations are still much better than that of the first-order upwind scheme 
after one rotation. The clipping is not as conspicuous as that of s2. 

A limiter function which is a continuous function of ri was proposed by van Leer 
in [ 171 (see also [27]). The corresponding slope reads 

svL(u, b) = ‘ail++h”b. (14) 

We drop here and in the following expressions the index “i,” too; as in (11) a 
denotes the right-hand and b the left-hand difference quotient. Another slope, due 
to van Leer [ 161, is the “monotonized central difference” algorithm 

s&a, b) = minmod 
a+b 
- 

2 ’ 
2 minmod(a, b) 

> 
(15) 

which was given in the context of the MUSCL-scheme (see also [S]). Figure 7 
shows the results of the scheme using (14). The maximal values of the 
approximations are better than that of the scheme using s1 (Fig. 5). They are 
similar to those obtained by the element k = 1.4 of class (lo), but the clipping of 
(14) is weaker. The scheme based on the monotonized central difference (15) 
(Fig. 8) for our both problems produced better results than sir svL which can be 
seen from the maximum values, but the clipping phenomenon is also visible. The 
excellent resolution of the discontinuity given by the superbee s2 is not obtained. 



FIG. 5. Scheme based on the slope (IO) s,. 

b4.x 1 10: 

FIG. 6. Scheme based on the superbee slope (10) s2. 
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FIG. 7. Scheme based on the slope (14) svL. 

FIG. 8. Scheme based on the slope (15) sM. 
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All slopes listed above possess the property 

s(a, h) = s(h, a) (161 

which guarantees that forward and backward gradients are treated in the same 
fashion. We will see that this is an important condition to preserve the symmetry 
properties of the exact solution. In terms of the transition functions the condition 
(16) reads q(r)/r = cp( l/r) (see [27]). The class of slopes 

+,,,(a, 6) = minmod(a, kb) (17) 

with 1 5 k 5 2 which was used by Osher and Chakravarthy [21] does not possess 
this property unless k = 1. The results for the test problems in the most compressive 
case k = 2 are presented in Fig. 9. They show a lack of symmetry. To get a better 
impression of the symmetry properties we plotted the contour lines of the numerical 
results for the rotating cone problem in Fig. 17-l 8. 

Another class of high resolution schemes was proposed by Chakravarthy and 
Osher in [4] in the context of flux limiter, too. This class includes a scheme which 
is of third-order accuracy in space. It can also be used to define generalized 

FIG. 9. Scheme based on the slope (17) sco,2. 
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MUSCL schemes. Instead of (9) the values at the interfaces of the grid zones are 
defined by 

Ax 
ui+ - =ui+-~6i+, 

2 - 

where the value of di+ are determined as weighted average values of slopes S, s” - 

6,+ =$[(l-e);,+(l+e)s,] 

6,+ =i[(l-e)S,+(l+e)d,] 
(19) 

with - 1 5 0 s 1. The slopes S, % are defined by 

sli =A minmod(a,, Ib;) 

s”, = & minmod(lu,, bi) 
(20) 

with ai, bj from (11). The compression parameter is given within the range 1 5 15 
(3 - e)/( 1 - 0). The boundary values (18) can be written in form (9) only if I= 1, 
- 1 50 I 1, with the corresponding slope equal to s, or if 8 = 0, 1 5 15 3. In the - - 
case 8 = 0, 1= 3 the slope agrees with So. Beside these cases the schemes based on 
(18) do not satisfy a symmetry condition. The value 0 = f leads to a scheme which is 
of third-order accuracy in space. Figures l&12 show the results of these schemes 
for 0 = f, I, and - 1, respectively, and the optimal corresponding compression 
parameter 1. They produce good results as regards the maximum values, but the 
invalidity of the symmetry condition leads to a non-symmetric shape. The contour 
lines are plotted in Fig. 19. 

All slopes considered above vanish at local extrema. The schemes are TVD- 
schemes and hence degenerate at local extrema to first-order accuracy in the sense 
of the local truncation error (see [21]). The stronger damping at these points is 
clearly seen from our results. To overcome this drawback of TVD-schemes, van 
Albada et al. [1] proposed a slope which does not vanish at these points 

SVA(u, b) = Cab + E2)(Q + b) 
u2 + b2 + 2~~ ’ (21) 

where &2 is a small value of O(Ax). The slope (21) satisfies the symmetry condition 
(16) and is still TVD in regions away from extrema. Especially in these regions, the 
slope sVA with E = 0 is always smaller than svr. The results achieved with this 
scheme are shown in Fig. 13. Results similar to that for svr are obtained but a slight 
undershoot arose at the base of the figures. The results are quite similar for a wide 
range of values of E; we used in our calculations s2 = 0.008. 



FIG. 10. Scheme based on the slope (18k(20) with 0=$, 1=4. 

FIG. 11. Scheme based on the slope (18t(20) with B = 4, I = 5. 

581.77!1-3 



FIG 12. Scheme based on the slope (18)-(20) with 0= -1, 1=2. 

FIG. 13. Scheme based on the slope (21) sVA. 
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Recently Harten and Osher [ 121 (see also [3]) have introduced a new class of 
schemes which they called UNO-schemes (uniformly non-oscillatory). These 
schemes are required not to diminish the total variation but only the number of 
local extrema and are allowed occasionally to accentuate a local extremum. They 
do not possess the clipping phenomena. We used in our calculations the slope 
proposed in [ 121 which is a second-order approximation of u,. It is given by 

(~u~o)~ = minmod 
Ax Ax 

ai -2 ni+ ,,2, h, +y di- (22) 

where d denotes the second-order terms 

1 
4,112 =dx,minmod(u,+,-2ui+u,-,,Ui+z-2ui+, +ui) (23) 

and ai, bi are the first terms given by (11). This UNO-scheme yields the best results 
for the problem of the rotating cone (see Fig. 14). The form of the cone is preserved 
very well; after one rotation the maximum of the approximation is less than that of 
the “superbee cone,” but the UNO-scheme does not indicate any clipping. The 
value of the extremum did not monotonously decrease, but sometimes increased. 

1 

FIG. 14. Scheme based on the slope (22). (23) sUNO. 
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This effect was limited to the second decimal point in our calculations. The results 
for the cut-out cylinder are not as perfect as those for the cone. After one rotation 
the maximal value is greater than that of the scheme using superbee s2, but the 
shape is worse. This problem also shows that the UNO-scheme may not preserve 
the symmetry. We have tried to pick out the best of both schemes-the good 
approximation of the cone by the UNO-scheme and the good approximation of the 
cylinder by the superbee-and combined both schemes by hybridization. We used 
the TVD-scheme for strong gradients and near extrema we switched to the UNO- 
scheme. But we did not succeed in capturing all desirable features. Although we 
obtained the best maximum values for both problems and the best resolution of the 
cut-out cylinder, the results for the cone still indicate strong clipping (see Fig. 15). 

There are still some other approaches to obtain a high resolution scheme. Harten 
[lo] in his approach applied a first-order upwind scheme to the conservation law 
with a modified flux. The added antidiffusive term is chosen in a way that the 
resulting scheme is a second-order TVD scheme for the original conservation law. 
For the linear case the scheme of Harten agreed with a MUSCL-type scheme based 
on the slope S, of the class (10). Another way has been given by Davis [8]. He 
showed that the schemes using flux limiters may also be written as the Lax- 
Wendroff scheme with an upwind biased artificial viscosity term. Davis [S] 
succeeded in removing this upwind weighting and obtained a “simple” viscosity 

1 

FIG. 15. Scheme based on a hybrid slope of sUNo, s2. 
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FIG. 16. Symmetric TVD-scheme [S]. 

term which depends on the ratio of the gradients and which can be added to 
classical second-order schemes to become TVD. Because these schemes are no 
longer based on upwind differencing, they are also called symmetric TVD-schemes 
(see [29]). The results of Davis’ TVD-scheme are shown in Fig. 16. It indicates a 
lack of symmetry. 

We will not give exact values of the computer time the different schemes 
consumed, because we did not optimize in efficiency, and hence these values will 
give wrong information. We can roughly compare the computational effort in the 
following way. The Lax-Wendroff scheme consumes more than twice the time 
required for the Courant-Isaacs-Rees scheme and the high resolution schemes 
consume about threefold or fourfold time, depending on the computational effort 
spent to calculate the slopes. For theoretical results about difference schemes for 
conservation laws see [9, 20, 211 and the references cited here. 

4. CONCLUSIONS AND REMARKS 

The numerical results for the two initial value problems of Section 2 lead to the 
following conclusions. 

All high resolution schemes considered here reduced very effectively the 
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numerical dissipation of the underlying low order upwind scheme. The best 
resolution of discontinuities was achieved by a high resolution scheme based on the 
“superbee” slope proposed by Roe [24]. It produced excellent results for the test 
problem with the rotating cut-out cylinder. But the problem with the rotating cone 
shows a very strong clipping phenomenon of this TVD-scheme. The top of the cone 
is strongly damped and clipped after a short time. Furthermore, these results show 
that this scheme is slightly over-compressive and starts to compress the monotone 
transitions into discontinuities (Figs. 6, 17). For this problem with the cone 
excellent results have been produced by a UNO-scheme of Harten and Osher [ 121. 
After six rotations the maximum value of the approximated cone is less than that 
given by the superbee scheme, but the UNO-scheme preserves the shape of the cone 
much better (Figs. 14, 19). The cut-out cylinder was damped more strongly by the 
UNO-scheme. The other schemes considered here at not as compressive as that 
based on the superbee slope, but also the clipping phenomenon is not so visible. 
The numerical results show that condition (16) for the slopes plays an important 
role in maintaining symmetry properties of the solution. 

Our results for the linear two-dimensional problems give good insight into the 
behavior of the different high resolution schemes approximating linear and non- 
linear discontinuities. For nonlinear problems an over-compressive behavior of a 
scheme may additionaly cause difficulties at centered rarefaction waves. The 
monotone transition is compressed into a non-physical discontinuity which is 
usually called “rarefaction or expansion shock” and which violates the entropy 

a 

b 

C 

FIG. 17. Contour lines of the exact solution (a) and of the numerical solutions for the rotating cone 
problem after 1 and 6 rotations (left, right, respectively); (b) Fig. 5; (c) Fig. 6. 
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a 

b 

C 

FIG. 18. Contour lines of the numerical solutions for the rotating cone problem after 1 and 6 
rotations (left, right, respectively); (a) Fig. 7; (b) Fig. 8; (c) Fig. 10. 

a 

b 

C 

FIG. 19. Contour lines of the numerical solutions for the rotating cone problem after 1 and 6 
rotations (left, right, respectively); (a) Fig. 11; (b) Fig. 12; (c) Fig. 14. 
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condition. These effects are observed in the case of the one-dimensional equations 
of compressible gas dynamics, the Euler equations, e.g., in [ 18, 271. Here the scalar 
schemes are extended to the system via Roe’s [23] or Huang’s [13] formal exten- 
sion. Both are based on a local linearization of the nonlinear system which defines a 
local system of characteristic fields. The scalar schemes are then applied scalarly to 
each characteristic field (see also [lo]). For the Euler equations these fields are 
either genuinely non-linear or linearly degenerate. The waves of a linearly 
degenerate field are exclusively contact discontinuities while the waves of a 
genuinely nonlinear field are either shock waves or rarefaction waves. Hence, for 
the linearly degenerate field our results can be applied directly. For the nonlinear 
fields the superbee slope s2 may be too compressive at sonic points and may 
produce rarefaction shocks (see [ 18,271). Thus, for the nonlinear field it is better 
to use a less compressive slope, e.g., svL, svA, SUNo, or s,,s, or to switch to a less 
compressive one near the critical points. Also artificial compression, which may be 
added to all schemes as a separate step to steepen the discontinuities, should not be 
applied to centered rarefaction waves. For nonlinear problems there may be 
different upwind schemes of first-order accuracy and the choice of the upwind 
scheme within the high resolution algorithm will also influence the numerical 
results. Some calculations for the Euler equations using different upwind schemes 
are given in [l, 181. For simple one-dimensional problems the results turned out to 
be quite similar [IS]. 
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